Contravariant pairings between standard Whittaker modules and Verma modules
نویسندگان
چکیده
We classify contravariant pairings between standard Whittaker modules and Verma over a complex semisimple Lie algebra. These are useful in extending several classical techniques for category O to the Miličić–Soergel N. introduce class of costandard which generalize dual modules, describe canonical maps from terms pairings. show that have unique irreducible submodules share same composition factors as corresponding modules. give an algebraic characterization global sections twisted Harish-Chandra sheaves on associated flag variety, defined using holonomic duality D-modules. prove with these blocks N structure highest weight categories we establish BGG reciprocity theorem
منابع مشابه
Constructing homomorphisms between Verma modules
We describe a practical method for constructing a nontrivial homomorphism between two Verma modules of an arbitrary semisimple Lie algebra. With some additions the method generalises to the affine case. A theorem of Verma, Bernstein-Gel’fand-Gel’fand gives a straightforward criterion for the existence of a nontrivial homomorphism between Verma modules. Moreover, the theorem states that such hom...
متن کاملSemi–holonomic Verma Modules
Verma modules arise geometrically through the jets of homogeneous vector bundles. We consider in this article, the modules that arise from the semi-holonomic jets of a homogeneous vector bundle. We are particularly concerned with the case of a sphere under MMbius transformations. In this case there are immediate applications in the theory of conformally invariant diierential operators.
متن کاملHomomorphisms between Verma Modules in Characteristic P
Let g be a complex semisimple Lie algebra, with a Bore1 subalgebra b c g and Cartan subalgebra h c b. In classifying the finite dimensional representations of g, Cartan showed that any simple finite dimensional g-module has a generating element u, annihilated by n = [b, b], on which h acts by a linear form I E h*. Such an element is called a primitive vector (for the module). Harish-Chandra [9]...
متن کاملTwisted Verma modules
Using principal series Harish-Chandra modules, local cohomology with support in Schubert cells and twisting functors we construct certain modules parametrized by the Weyl group and a highest weight in the subcategory O of the category of representations of a complex semisimple Lie algebra. These are in a sense modules between a Verma module and its dual. We prove that the three different approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.06.017